Extensions 1→N→G→Q→1 with N=C2 and Q=(S32)⋊C4

Direct product G=N×Q with N=C2 and Q=(S32)⋊C4
dρLabelID
C2×(S32)⋊C424C2x(S3^2):C4288,880


Non-split extensions G=N.Q with N=C2 and Q=(S32)⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1((S32)⋊C4) = (S32)⋊C8central extension (φ=1)244C2.1((S3^2):C4)288,374
C2.2((S32)⋊C4) = C62.D4central extension (φ=1)48C2.2((S3^2):C4)288,385
C2.3((S32)⋊C4) = C4.S3≀C2central stem extension (φ=1)244C2.3((S3^2):C4)288,375
C2.4((S32)⋊C4) = (C3×C12).D4central stem extension (φ=1)484C2.4((S3^2):C4)288,376
C2.5((S32)⋊C4) = C3⋊S3.2D8central stem extension (φ=1)244C2.5((S3^2):C4)288,377
C2.6((S32)⋊C4) = C3⋊S3.2Q16central stem extension (φ=1)484C2.6((S3^2):C4)288,378
C2.7((S32)⋊C4) = C32⋊C4≀C2central stem extension (φ=1)484C2.7((S3^2):C4)288,379
C2.8((S32)⋊C4) = C62.2D4central stem extension (φ=1)244+C2.8((S3^2):C4)288,386
C2.9((S32)⋊C4) = C62.3D4central stem extension (φ=1)48C2.9((S3^2):C4)288,387
C2.10((S32)⋊C4) = C62.4D4central stem extension (φ=1)96C2.10((S3^2):C4)288,388
C2.11((S32)⋊C4) = Dic3≀C2central stem extension (φ=1)244-C2.11((S3^2):C4)288,389

׿
×
𝔽